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A new algorithm for the calculation of Voronoi polytopes in 2D and
3D Euclidean space is described. Some results for random nuclei with
reciprocal boundary conditions in 2D and 3D are discussed in relation
to previous findings. In 2D the number of sides distribution is identified
as being close to 7(3.5; 21). Kiang's conjectures for the distributions of
areas and volumes for polygonal and polyhedral tessellations respec-
tively, are supported: the challenge of deriving his F-distributions
beyond 1D stilf stands.  © 1993 Academic Press, Inc.

1. INTRODUCTION

With respect to nuclei a unique polytope encloses all
parts of space closer to a given nucleus than to any other
nucleus. Such a polytope, often named after Voronot [34]
or Dirichiet [14] is necessarily convex. The Voronoi
polyhedra for certain regular arrays of nuclei are familiar as
Wigner—Seitz [37] cells but limited statistics of Voronoi
polytopes for irregular distributions of nuclei were studied
mathematically in the picneering work of Meijering {23 .

Barrett and Mackay [6] distinguish between “exact” and
“statistical” algorithms: in the former the geometrical
features are themselves explicitly computed; in the latter,
test points are selected and to which nucleus each “belongs”
is determined. Kiang’s program [20] being statistical
yielded only areas of polygons and volumes of polyhedra.

Kiang conjectured that the generalized formula

AxY " exp(—Ax)

i @)=~ (1)

(wherein the two parameters, 2 and «, are equal) applies
and is [{4;4) for the areas of 2D Voronoi polygons and
F(6; 6) for the volumes of 3D Voronoi polyhedra. This is
derived from his demonstration that the distribution of
lengths of 1D Voronoi polytopes for random nuclei on a
line in 7{2;2). Kiang’s conjecture for dimensions higher
than one has been disputed by others (below) but recent
results [247] support Kiang. However, it is said [36] that

3ol

Kiang revised his value for the two parameters in 2D, but in
the context of sparser data than presented here.

Our 2D and 3D programs for the present results are
“exact” and we compute actual tesscllations rather than
repeatedly computing a single Voronoi polygon for a “cen-
tral” nucleus, which has been done in some investigations,
e.g., Crain [13], Andrade and Fortes [1]. Moreover, our
programs invoke the reciprocal boundary condition, or not,
as desired, which 1s explained below.

The program for 2D used here {referred to as VORONOI
in the text [24]) tolerates vertices of > 3-hedral valency
should they arise. The program was readily extended to 3D
(referred to as VOR3D in the text) to obtain statistics,
including of plane sections {Moore [24]). The Voronoi
programs outlined by Angell and Moore [2] and by Angell
f3] have different algorithms: that described by Angeil and
Moore [4] is quite different, computing a 2D slice of an
N-dimensional “weighted” Voronoi tessellation.

Other exact 3D programs exist, notably that of Finney
[15] in connection with Bernal’s weil-known researches
upon the structure of liquids [7-107] yielding statistics upon
Voronoi polyhedra for nuclei corresponding to the centres
of co-equal balls packed randomly. For 3D: chronologically
there are algorithms (not necessarily “exact”) in Refs. [27,
20, 10, 15, 21, 28, 12, 17, 22, 11, 35, 30, 32, 5, 26, 18, 31, 6],
but it is remarkable how little numerical data upon random
Voronoi polyhedra has been published.

2. THE ALGORITHM

The term “vertex” is here reserved for any point in a 2D
or 3D tessellation where the apices of its component
polygons or polyhedra meet. The term “apex” refers to a
“corner” of a single polygon or polyhedron.

In 2D, to find the Voronoi polygon of each nucleus the
Voronoi “supra-polygon”™—the region of the same shape as
the Voronei polygon but of twice its linear dimensions
(Fig. 1), 1s constructed. Each nucleus p, (i = 1, ..., N)is taken
in turn as the “target nucleus” forming the temporary origin
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FIG. 1.
due to nuclei q;, q,, ... Its apices are a, a,, ..., a5 and its “radius™ is R The
corresponding Voronoi polygon is heavily stippled.

The Voronoi suprapolygon (lightly stippled) of nucleus p;=q,

of the vector co-ordinate system. A strategy is applied so
that nuclei outside the immediate vicinity of the target
nucleus p; are not considered unless necessary. The less
remote nucleiq; (j=2, 3, ..., j = 1 is the target nucleus p,) are
chosen in increasing distance from the target nucleus and
through each the line L, is calculated perpendicular to the
line joining g, to the origin. The supra-polygon of q, is
then the area surrounding the origin which is not itself
intersected by the lines L ;.

By first defining an initial triangle so large as certainly to
contain the supra-polygon, the lines L,, L,, ... are taken in
sequence to lop pieces off the progressively more lopped
polygon, until eventually the “radius™ of the latter (the
maximum distance from the origin to each of the apices)
becomes less than the distance of the next line £, from the
origin. The remaining lines L, (k> /) cannot intersect
this polygon; whence it must be the required Voronoi
supra-polygon.

The line L; is defined by the vector q;=(q.,,q,). The
polygon is defined by the apicesa |, a,, as, ..., a. (anti-clock-
wise about the origin}, where a.=a, closes the polygon.
Since the slope of the line L, is —q,/q,, the equation of L,
can be given in the functional form

fleyY=qi+4q;—xq,— yq,=0. (2)
The apices a, (1=2, 3, ..., ¢) of the polygon are considered in
turn. If f(a,) = 0 then a, remains as an apex of the polygon,
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whereas if f(a,) < 0 then this apex will be lopped off. When
the sign of f(a,) is not the same as the sign of f(a,_,) then
L, intersects the side of the polygon which joins the apices
a,_, and a,. This intersection (which will be a new apex in
the lopped polygon) is located at

ar+ﬂ(ar—1 —3,), (3)
where
e ) “
(3171 —ﬂ,) q}

For gathering statistical data, the tessellations (2D and
31D} had 1000 nuclei each. Pseudo-random numbers, dis-
tributed with an equal probability over the interval 0 to 1,
represented the co-ordinates of the nuclei in a unit square or
cube.

The strategy to reduce the number of nuclei considered
with respect to the target nucleus, is briefly as follows:

The unit square is divided into 50 x 50 integer boxes and
the nuclei are categorised accordingly. First, the integer box
in which the target nucleus lies is identified. All nuclei lying
in the same integer box as the target nucleus, plus those
lying in the eight adjacent integer boxes, are recovered. But
only those within a disc centered on the target nucleus and
of radius equal to the side length of an integer box are sorted
into ascending distance from the target nucleus. These
nuclei are then taken in this sequence for calculation of their
lines L, during the polygon lopping.

If the algorithm still has not terminated by virtue of the
next nucleus being more distant from the origin than the
radius of the lopped polygon, then the square annulus of
more remote integer boxes is brought into piay. The radius
of the disc is expanded accordingly and the nuclei within it
are sorted into ascending distance from the target nucleus.
Included in this sorting are the nuclei in the previous square
annulus of integer boxes that lay outside the previous disc.
Eventually the algorithm must terminate and the supra-
polygon is reduced linearly by a half to become the Voronoi
polygon. The above processes were also implemented in 3D
[24]. In both 2D and 3D, when the RBC (reciprocal
boundary condition) is required, appropriate integer boxes
were translated. The latter results in the top edge of the
tessellation matching its bottom edge, and the left-hand
edge of the tessellation matching its right-hand edge. With
the RBC applied, translated replicas of the 2D or 3D
tessellation would themselves tessellate Euclidean 2D or 3D
space, respectively.

For 3D, each apex of a polyhedron is tested to see if any
lie on the far side of the lopping plane with respect to the
target nucleus. If so, each of its facets, dealt with in any
order, are categorised as follows:
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Type 1. The single entirely new facet existing in the
lopping plane.

Type 2. An old facet entirely on the far side of the
lopping plane from the origin which will be completely lost.

Type 3. An old facet intersected by the lopping plane
and modified accordingly (in the manner of the lopping
of an individual polygon in the 2D algorithm—ie,
handedness of touring its apices is maintained).

Type 4. An old facet entirely on the same side of the
lopping plane as the origin remaining as part of the new
polyhedron.

3. RESULTS

Although we have obtained the distributions of a variety
of measures of the Voronoi polytopes of random dispersions
of nuclei in both 2D and 3D (with RBC), attention is here
primarily confined to the measure that is 2D area and 3D
volume. Some discussion of the measure that is 2D number
of sides is given here because of its relevance in testing
both the present, and previous, algorithms (see Table I).
Throughout, s is the standard deviation of observed values.

TABLE I

Comparison between Present Data on Number of Sides of
Random Voronoi Polygons and Those of Crain and of Hinde and
Miles

Number Hinde and
of sides Crain "78 Miles "80 Present siudy
3 628 L.1% 22628 1.1% 1134 1.1%
4 6145 108% 214246 10.7% 10587 106%
5 14783 259% 518251 259% 26099 26,1 %
6 16825 29.5% 588812 2949% 20329 203%
7 11306 198% 398266 199% 19976 200%
8 5105 9.0% 180322 9.0% 9012 9.0%
9 1686 3.0% 59062 3.0% 2972 3.0%
10 428 08% 14858  0.7% 721 07%
11 3 01% 2984 02% 148 0.2%
12 10 <0.1% 493 <0.1% 19 <0.1%
13 3 <01% 68 «0.1% 3 <0.1%
14 0 — 10 <0.1% 0 —
=15 0 — 4] — 0 —
Total number
of sides 341,815 11,999,335 600,000
Total number
of polygons 57,000 2,000,000 100,000
Mean number
of sides
pet polygon 599675 5.99967 6
Sides lost 185 665 None
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3.1. 2-Dimensions. For 100 runs of VORONOI (with
RBC) for 1000 nuclei each, Fig. 2 shows the distribution of
the number of sides per Voronoi polygon; Fig. 3a shows the
distribution of the areas of these polygons.

3.2. 3-Dimensions. For 50 runs of VOR3D (with RBC)
for 1000 random nuclei each, Fig. 4a shows the distribution
of the volumes of the Voronoi polyhedra.

4. DISCUSSION OF RESULTS FOR
2-DIMENSIONS

4.1, Distribution of number of sides of the polygons. The
present data (Table 1) is virtually identical to that obtained
by Crain [137] and by Hinde and Miles [19] with respect to
percentages, but the latter investigations lost some sides:
whereas a finite three-hedral tessellation obeying the RBC
has mean number of sides exactly six the proof of which is
trivial [24]. The best two-parameter [-distributions [24]
for integer and half-integer values of 1 and « are given in
Figs. 2a and b.

4.2. Distribution of areas. Kiang’s [20] I'(4; 4) is super-
imposed in Fig. 3. Not only does Moran [25] believe
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FIG. 2. The present results (mean = 6, s° = 1.77492) for distribution of
number of sides of the 100,000 random Voronoi polygons: {a) with
I(3:18) fitted (mean =6, s°=2); (b) with 7(3.5;21) fitted (mean==6,
52 =171429).
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FIG. 3. Standardised distribution of areas of 100,000 polygons (class
interval 0.01) mean = 1.00000, s = 0.53048: (a) with Kiang’s [(4; 4) super-
imposed; (b) some other f-distributions for comparison (see text}).

Kiang’s conjecture mistaken, but Sibson [29] states that
“No explicit form for the area distribution is known, for
example—the conjecture that it is a gamma distribution has
been shown to be false by numerical methods.” Sibson does
not detail the latter, nor does he cite the source of the con-
jecture in questicn. Presumably it is that of Kiang [20] and
the numerical methods are those of Gilbert [16]. Gilbert
arrived mathematically at 0.280 for the variance of random
Voronoi polygons. In the present results s? = 0.28141—and
yet I{(4; 4) fits remarkably well (Fig. 3a} and no sides were
lost.

According to Weaire, Kermode, and Wejchert [36], in
1984 Kiang revised his conjecture to become 77(3.5; 3.5), but
they found 77{3.58; 3.58), F(3.63; 3.63), and I'(3.61; 3.61) to
fit their simulations better (with the latter fitting best).
I(3.5; 3.5) is a better fit, but the other curves yield only very
small differences, Fig. 3b. However, once a departure from
I'(4; 4) is made, the physical power of Kiang’s conjecture, or
why a two-parameter [-distribution should be fitted at all,
is lost (and one must wonder why the volume distribution
is 8o close to f(6;6) il Kiang’s conjecture does not have
some considerable measure of truth about it).

Recently Tanemura [ 33] announced Kiang’s conjecture
to be false on the grounds that the three-parameter -dis-
tribution fits better for 2D areas and 3D volumes. For areas
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FIG. 4. Standardised distribution of volumes for the 50,000 random
Voronoi polyhedra (class interval 0.01) mean=099994, 5=0.41899:
(a) with Kiang’s I'(6; 6) superimposed; (b} some other [-distributions for
comparison (sec fext).

he cites values for the three parameters (1.0787, 3.0328, and
3.3095, respectively) which were some of the trios of values
which Hinde and Miles [197] fitted to their data. However,
this curve {Fig. 3b} seems little different from the curve due
to Kiang’s two-parameter -distribution using the value
3.61 due to Weaire, Kermode, and Wejchert [36]. Again
there is no theoretical reason to support the values used.

5. DISCUSSION OF RESULTS FOR 3-DIMENSIONS

5.1. Distribution of volumes of polyhedra. Figure 4 has
Kiang's I'(6;6) superimposed. The fit is excellent. This
despite Moran [25] having said of Kiang’s conjectural
(6, 6): “However Gilbert had obtained exact expressions
for the variances which show that this conjecture cannot be
true.” However Gilbert’s variance for volume is 0.180 and
the variance for the present results—which fits Kiang’s con-
jecture—is also 0.180 (to three significant figures). Andrade
and Fortes [1] fit £(5.56; 5.56) (Fig. 4b). However, their
class interval was 10 times coarser and for <1000
polyhedra—an unspecifiecd number of their tessellations
lacked the RBC and peripheral polyhedra were ignored.

On one hand, Andrade and Fortes [1] regard the
Voronoi volumes as being “well described” by Kiang’s dis-
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tribution but in which /{5.56,5.56) is substituted for I(6; 6);
on the other hand (equally recently) Tanemura [33]
dismisses Kiang’s conjecture (Section 2). He fits a three-
parameter [-distribution, with values 1.409, 2.813, and
4.120 (Fig. 4b), respectively, referring to data in the press by
Tanemura, Qgawa, and Ogita. However, their only data so
far available are the mean values for numbers of facets, for
number of apices, and for surface areas for an uncertain
number of polyhedra [33]. To two places of decimals these
agree with Meijering’s values, but the distribution of
volumes is not given.

6. CONCLUSIONS

6.1. Random nuclei dispersed in 2D. The greatest num-
ber of sides of any Voronoi polygon that occurred was 14,
the mode is 6. The distribution of number of sides is here
found to follow I'(3.5;21) closely. The work of Kiang is
strongly supported and the mathematical challenge of
deriving I'(4; 4) for the area distribution remains.

6.2. Random nuclei dispersed in 3D.  All the mean values
obtained during the present computer simulations agree
very closely with the values obtained mathematicaily by
Meijering. Kiang’s I'(6; 6) curve for volume distribution is
supported and the mathematical challenge of deriving it
theoretically, stands.
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